Louisiana's Balanced Asphalt Mixture Design

Samuel Cooper III, Ph.D., P.E.

Materials Research Administrator
Louisiana Department of Transportation and Development

Asphalt Testing Solutions & Engineering Webinar December 16, 2020

The Process – What we Did.

- 4 years post implementation now!
 - Years of forensic investigation and research
 - LTRC Asphalt Research Group, LADOTD Materials Lab, EMCRF, Louisiana HMA Producers
 - Pilot Specification Development
 - Pilot Program/Field Trials
 - Practical Adjustments
 - Industry Buy-in
 - Training

Introduction

- LADOTD's conventional design practice were not capturing performance
- Increases in recycled material content
- Methods to evaluate mixture performance indicators
 - Determine Asphalt Quality vs Quantity

How can we determine binder quality in mixtures?

- Laboratory tests to evaluate the as-built pavement qualities.
- The test will screen materials prone to rutting, cracking and alternative moisture damage indicators.
 - Create a <u>Balanced Mixture Design</u>

Complement Volumetric Mixture Design with Testing

- What is a balanced mixture design?
 - Process to ensure adequate resistance to both rutting and cracking distresses
- Laboratory testing:
 - Rutting and Cracking

LADOTD Test Selection Criteria

- Mechanistic Tests
 - Pavement Performance
- Intermediate Temperature
 - Fatigue endurance
- High Temperature
 - Permanent deformation
- Features
 - Fundamental
 - Easy to Use
 - **■** Reliable
 - Cost

Thermal Cracking

Fatigue Cracking Permanent Deformation

Rutting Resistance: LWT Test

- Performance Indicator
 Resistance to Rutting and Moisture Sensitivity
- □ Test Protocol AASHTOT324
- Temperature50°C
- Loading

Wheel Diameter: 203.5 mm (8 inch)
Wheel Width: 47mm (1.85 inch)
Fixed Load: 703 N (158 lbs)
Rolling Speed: 1.1 km/hr
Passing Rate: 52 passes/min

Cracking Test?

- Several options available
 - Bending Beam Fatigue, SVECD, Overlay Tester, Intermediate Temperature SCB, iFIT, Energy Ratio, Fracture Energy (ITS)
- Which one is "best"?
 - Each has advantages and disadvantages
- LADOTD selected Intermediate Temperature SCB
 - LADOTD TR 330
 - ASTM 8044

Why SCB?

- Intermediate Temperature test for Intermediate Temperature Fracture
- Gyratory and field core
- Simplicity of testing equipment
 - can be adapted to plant lab
- History of forensic success and field correlation
- Fundamental derived from fracture mechanics principles
 - Not an index based
- Test procedure
- Repeatable
 - Reporting COV of fracture energy less than 15%

Test Equipment -- Development

LADOTD Specification Changes

- Lowered Gyrations (Level 1 and Level 2)
 - L1: 55 Gyrations N_d
 - L2: 65 Gyrations N_d
- VTM Remains
 - **3.5%**
- Raised design VFA
 - **72%**
- Raised VMA
 - 0.5% Increase for each NMAS

Analysis: Balanced Design

Field Validation: LTRC Project 10-4B

Field Validation: LTRC Project 10-4B

				Table	e 502	- 7 ¹						
	1	Spha	ılt Co	ncre			ıl Cri	teria				
Nominal Max., Size Agg.	0.5 Inch (12.5 mm)			0.75 Inch (19 mm)			1.0 Inch (25 mm)				1.5 Inch (37.5 mm)	SMA
Type of Mix	Incidental Paving	Wearing	Course	Wearing Course	Binder	Course	se Binder Course		Base Course	ATB ⁴	Base Course	Wearing
Level [*]	A	1	2	2	1	2	1	2	1	1	1	2
Coarse Agg, Angularity, % Crushed, (Double Faced) + No. 4 (4.75 mm)	55	75	95	95	75	95	75	95	75	75	75	98
Fine ågg. Angularity, Min. % - No. 8 (2.36 mm)	40	40	45	45	40	45	40	45	40	40	40	45
Flat and Elongated Particles, % Max. (5:1)	10											
Sand Equivalent, Min. % (Fine ågg.) - No. 4 (4.75 mm)	40	40	45	45	40	45	40	45	40	40	40	NA
Natural Sand - Max. %	NA	15 15 15					25	25	0			
Asphalt Binder		Table 502-2, (3% minimum for Asphalt Treated base (ATB), 6% min for 8MA)										
Friction Rating		Table 502-3										
RAP, Max. % of Mix	20	15	15	15	20	20	20	20	30	30	30	0
			Co	mpacted I	Mix Volu	pobles.4						
VMA, Min. %	13.5	13.5	13.5	12.5	12.5	12.5	11.5.	11.5	11.5	n/a	10.5	16.0
Air Volds, %		(2.5-4.5);; (no limit for ATB)										
VFA, % ⁰		(69-80); no limit for ATB										
	-	-	٠,	_			_		,	-1-	-	-

LWT, Rut Depth, 50°C, Wet

Level 1: 10mm @ 20,000 passes maximum, Level 2: 6mm @ 20,000 passes maximum.

SCB, min, J_c, kJ/m² @ 25⁰ C, Aged

Level 1 : Jc = 0.5 minimum, Level 2 : Jc = 0.6 minimum.

LADOTD Experience – What did we do?

- Developed a system to conduct mechanical property test to determine the anticipated performance of asphalt mixtures
 - LWT and SCB were the most feasible for implementation by state and contractor.
- Incorporate tests into state specification compliance evaluation.

LADOTD Experience – Train the People!!

- Semi Circular Bend (SCB)Test Training Workshop
 - April 16, 2015
- Participants
 - Contractors
 - LADOTD
 - Consultants

Semi Circular Bend (SCB) Test Training Workshop Agenda April 16, 2015

8:00 - 8:30 am Welcome and Announcements Harold "Skip" Paul

8:30 – 9:45 am Changes in the New Specification Chris Abadie

9:45 – 10:00 am Break

10:00 - 11:30 am SCB Training

a. SCB – History/Concept Louay Mohammad (20 min)

SCB - Research/Specification Review Bill King (10 min)

c. SCB – Testing Sam Cooper III (60 min)

i. Video

ii. Sample Prep

iii. Reporting

11:30 - 12:30 pm Lunch Provided by LAPA

12:30 – 2:45 pm Lab Demonstration of Test Sam Cooper III/Lab Personnel

2:45 – 3:00 pm Break

3:00 – 4:00 pm Open forum/Discussions/Questions Chris Abadie/Bill King

LADOTD Experience – Make it practical

- Develop a plant lab SCB test protocol.
 - Utilize Marshall Load Frames.

- Contractors in the state have adopted the methodology and are currently evaluating mixtures with success.
 - Reporting low variability of fracture energy
 - <15%
 - Specimen fabrication is a complication
 - Long Term aging protocol 5 day @ 85°C is a concern.

LADOTD Experience – Influence on Mixtures

- Districts have implemented the 2016 Specification
- LTRC is evaluating "balanced" mixtures designed under the new specifications
 - Increase in Hamburg Rut depth, still meets specification
 - SCB parameter, Jc, is being met
 - Asphalt Cement Increase of ~0.3 %
 - VFA no longer on the bottom of the range
 - Pilot mixtures performing to date

LADOTD Experience – Observations

- Learning a lot about the relationship between base binders and mixture design.
 - Screens out binder blend compatibility concerns with latex and crumb rubber modification
 - Binder Quality Matters!

LADOTD Experience – Observations

- A few failures at the beginning of the implementation.
 - Contractors were made aware of the upcoming changes during the pilot period.
 - They were able to get their labs and mixtures ready during this time period.

LADOTD Experience – Innovation

Location	Mix Level	Asphalt Grade Required	Substitutions Allowed					
			Low Grad	Higher Grade				
Mainline Wearing & Binder ²	1	PG 70-22m	PG 67 (Binder only), with tra	PG 82-22rm, and PG 76-22m				
Mainline Wearing & Binder ³	2 and SMA	PG 76-22m	PG 70-22m with Hydrated Lime	PG 70-22m (Binder Only)	PG 82-22rm			
Base ⁴	1	PG 67-22	PG58-	PG 82-22rm, PG76-22m, PG70-22m				
Minor Mixes, including Leveling ⁵	ALL	PG 67-22			PG 82-22rm, PG76-22m, PG70-22m			

¹Lower grade substitutions are only allowed if LWT rut depths < 6mm for the design level.

² Semicircular bend test (SCB), minimum, Jc=0.5 KJ/m² required for all substitutions

³Semicircular bend test (SCB), minimum, Jc=0.6 KJ/m² required for all mainline substitutions

⁴When 21-30% Rap is used, PG58-28 is required

⁵For single lift overlay match grade of overlay

LADOTD Experience – Observations

- May still be too early to realize the full impacts of implementing BMD.
 - Current research ongoing to monitor roadways produced with the BMD specification and quantify life-cycle costs.
 - No reported premature cracking or rutting failures to date.

What's Next?

- Continue collecting a database of mixture LWT and J_c results and compare to field performance.
- Conduct research regarding the implementation of SCB into
 QC
 - Evaluate changes in test parameters from different specimen types
 - Mix Design vs. Plant Produced vs. Field Core
 - Develop accelerated aging protocol

Specification

- Supplemental Specification Link:
 - http://wwwsp.dotd.la.gov/Inside_LaDOTD/Divisions/Engineering/ Standard_Specifications/Pages/Standard%2oSpecifications.aspx
 - 2016 Supplemental Specification
 - Part V Asphalt Pavement 08/18

